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Abstract
Using the coherent state techniques developed for the analysis of the EPRL
model we give the asymptotic formula for the Ponzano–Regge model amplitude
for non-tardis triangulations of handlebodies in the limit of large boundary
spins. The formula produces a sum over all possible immersions of the
boundary triangulation and its value is given by the cosine of the Regge action
evaluated on these. Furthermore the asymptotic scaling registers the existence
of flexible immersions. We verify numerically that this formula approximates
the 6j -symbol for large spins.

PACS number: 04.60.Pp

1. Introduction

In [1], Ponzano and Regge gave a formula for the large spin limit of the 6j symbol. It was
found to be related to the Regge action for discrete general relativity and with this motivation
they constructed the first spin foam model of 3D gravity. Their asymptotic formula was first
proved in [2], then more recently using different methods in [3, 4] and the square of the 6j

symbol was also studied in the context of relativistic spin networks [5, 6]. The next to leading
order approximation was recently considered in [7]. The precise formulation of the full state
sum was studied in [8].

In [9, 10], the semiclassical limit of some recent spin foam models [11–13] was analysed
using the coherent state techniques introduced in [13]. In particular the boundary there was
formulated in terms of coherent tetrahedra. Here we apply the same techniques in the 3D case
using coherent triangles and, instead of a single vertex amplitude, we analyse triangulations
of arbitrary genus handlebodies. This finally opens up the possibility of a continuum limit and
renormalization analysis of the model for this restricted class of 3-manifolds. In particular
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the resulting formula is well suited for studying the graviton propagator as introduced for
Ponzano–Regge in [14].

We begin the paper by describing the formulation of the Ponzano–Regge model in terms
of a single spin network diagram dual to the boundary triangulation. We then describe
the boundary state choice in detail and proceed to give the asymptotic formula in terms
of immersions of the boundary triangulation. The asymptotic scaling of the amplitude has
the interesting feature that it registers whether or not there are flexible immersions of the
boundary. An explicit example is provided in Steffen’s polyhedron. This analysis sheds light
on the general way in which asymptotic behaviour for larger triangulations can emerge from
a spin foam model. In particular it does not need to proceed by taking the asymptotics of the
individual simplex amplitudes first.

2. The Ponzano–Regge model in terms of coherent states on the boundary

The Ponzano–Regge amplitude was originally defined in terms of 6j symbols with a cutoff
regularization on the interior vertices. More recently, it was shown in [8] that the cutoff
regularization for sums over representations in some cases disallows a 2–3 Pachner move
(the Biedenharn–Elliot identity does not hold for a restricted sum over representations.) This
meant topological invariance of the partition function cannot be proved with Pachner moves
in this form. The alternative formulation in terms of delta functions and integrals over SU(2)

regularized with a gauge fixing tree is both finite and invariant under Pachner moves. Another
regularization using representations of a quantum group is given by the Turaev–Viro model;
however, it was also shown in [8] that the limiting procedure that gives the Ponzano–Regge
model is only known to exist for so-called non-tardis triangulations—i.e. a triangulation whose
edge lengths are restricted to a finite range by the boundary edge lengths. In order to avoid
discussing regularization, in this paper we will restrict to only considering these non-tardis
triangulations which are by definition finite. Slightly extending the terminology of [8], we
will call a manifold �3 a non-tardis manifold if there exists a ‘non-tardis’ triangulation of �3.

For a 3-manifold �3 with orientable 2-boundary ∂�3 its boundary state space is then given
by the possible geometric triangulations of the 2-boundary with half-integer edge lengths. The
amplitude for such a non-tardis manifold is given in terms of a non-tardis triangulation T of
�3 that extends the boundary triangulation and some boundary state �:

ZPR(�, T ) =
∑
je

∏
e

dim(je)
∏
�

1

〈Theta〉
∏
σ

〈Tet〉. (1)

Here e is an edge, � a triangle and σ a tetrahedron of the triangulation of the interior, j are
half-integers labelling the irreps of SU(2). The amplitudes 〈Theta〉 and 〈Tet〉 are the spin
network evaluation of the theta graph and the planar tetrahedral spin network, respectively.
These spin networks are the two-dimensional duals to the interior triangles � and, respectively,
to the surface of the tetrahedra σ in the triangulation. The labels of the 〈Theta〉 and 〈Tet〉
networks associated with the triangles and tetrahedra are given by assigning the j associated
with each edge to each dual edge that crosses it. Finally dim(j) = (−1)2j (2j + 1) is the
dimension of the j th SU(2) irrep in graphical calculus given by the evaluation of a single loop
diagram in the j representation.

In the interior the normalization and phase of the intertwiners cancels. However, at the
boundary these are arbitrary normalization for each face. This information is in the boundary
state � which consists of the boundary edge length data and the particular intertwiner chosen
at each face on the boundary.
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2.1. Ponzano–Regge on the boundary

In some cases it is possible to reformulate the Ponzano–Regge model defined above as a
spin network evaluation on the 2-boundary of the manifold. In fact, Ponzano and Regge
originally constructed the state sum model such that it agreed with the evaluation of a planar
spin network associated with the boundary of a 3-ball. An algorithm to construct a non-tardis
interior triangulation given an arbitrary triangulation of the boundary of B3 was given using
recoupling theory by Moussouris in [15]. This algorithm consists of reducing the boundary
spin network to a product of 6j symbols (which is always possible for a planar diagram) using
the recoupling identity and Schur’s lemma and then reconstructing the interior triangulation
from these 6j symbols. Since the boundary spin network is finite, this procedure gives a
manifestly finite definition of the partition function.

In this paper we will extend this result to spin networks on the boundary of handlebodies
of arbitrary genus. A non-tardis triangulation of a handlebody of genus g can be constructed
as follows. Start with a triangulation of the boundary of B3 with g distinct pairs of triangles
that do not share a common vertex. The boundary of the handlebody can be formed by
identifying these triangles and a non-tardis triangulation of the interior is given by applying
the Moussouris algorithm. This procedure may result in a degenerate triangulation of the
handlebody even if the triangulation of the ball is non-degenerate.

We will begin our analysis by reformulating the amplitude for the 3-ball B3 on a non-tardis
triangulation as a spin network on the boundary by a ‘reverse Moussouris algorithm.’ We then
describe how this procedure is altered for handlebodies of arbitrary genus. From now on, �3

denotes a handlebody.

Lemma 1. The Ponzano–Regge amplitude for a non-tardis triangulation of B3 can be
expressed in terms of a single spin network evaluation

ZPR(�,B3) = 〈(∂B3)∗〉, (2)

where ∗ is the two-dimensional dual of the surface triangulation with each dual edge labelled
with the SU(2) irrep corresponding to the length of the edge it is dual to, and the spin network
is evaluated as the planar projection without crossings, with the intertwiner normalization
given by �.

Proof. In order to reexpress the 3-ball with a given triangulation T and the amplitude
Z(�,B3) as the spin network evaluation of its boundary, we proceed inductively. Note first
that a triangulation of B3 given by a single tetrahedron is already of the form we want to put
it in: by (1) its amplitude is given exactly by the evaluation of the spin network dual to its
boundary 2-geometry with an intertwiner normalization chosen at each surface triangle. This
establishes the base case. We now need to show that the statement remains true when one
glues tetrahedra on to a ball amplitude already expressed in this manner, and thus reconstruct
arbitrary non-tardis triangulations of the 3-ball. To glue we add the necessary face and
edge amplitudes for the new interior faces and edges with the same normalization and phase
choice of the intertwiners chosen in the boundary state before. These boundary choices will
therefore cancel. This is in accordance with the observation above that the phase choice
and normalization on the interior are left arbitrary. A tetrahedron can be glued onto a ball
non-degenerately with one or two faces.

(1) If we glue one face of the tetrahedron with one face of the ball, we create an inner triangle.
The PR amplitude of the new ball differs from the old one by a 1

〈Theta〉 and a tetrahedral
net. In the spin network evaluation the vertices of the 3-ball and the tetrahedral amplitude
corresponding to the glued face, together with the face amplitude, are the normalized

3
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Figure 1. Case 1: reduction of the PR amplitude for two tetrahedra to the spin network on the
boundary.

projector on the invariant subspace of the irreps on the edges. As both amplitudes being
glued already are invariant we can simply replace them with parallel strands, see figure 1.
This changes the spin network graph being evaluated by changing a vertex to a triangle.
This is the dual to the change of the surface triangulation, and the resulting amplitude still
satisfies the lemma.

(2) If we glue two faces of the tetrahedron onto the ball, we create an inner edge and two
inner faces, the PR amplitude changes by adding a tetrahedral net, two thetas and one
dimension factor. However, these nets correspond exactly to the 6j symbol for changing
the ball amplitude from being connected along the dual of the old boundary to the dual of
the new boundary.

Note that for any non-tardis triangulation of B3, we can always build it up from a single
tetrahedron by gluing on one or two faces. Furthermore the two operations described above
do not introduce crossings and respect the planar projection chosen.

This establishes that one can express the Ponzano–Regge amplitude of an arbitrary
triangulation of B3 as a spin network evaluation on its boundary S2. This proves the lemma.

�

Consider next the case of a solid torus D2 ×S1, which we call T. Take a disc D ⊂ T such
that D = D2 × {p} ∈ D2 × S1. For future purposes, note that it intersects a non-contractible
loop in T. We can now always move this disc by a homotopy that keeps ∂D on ∂T such that its
boundary is the union of at least three edges of the boundary triangulation. Due to triangulation
invariance we can then choose a triangulation such that D has no internal vertex. We can then
cut the Ponzano–Regge amplitude along this surface, the resulting space is topologically B3

and we can apply the previous lemma. This yields a ball where two discs on the boundary
are glued by identifying edges and using the PR face and edge weights. Call n the number of
edges that make up ∂D. As we chose a disc with no internal vertex, the spin network dual to
it has to be an n − 2 vertex string with one outgoing edge per inner vertex, and two at the end.
Together with the face amplitudes this is simply the projector onto the invariant subspace of
the irreps on the circle ∂D. This projection can then be replaced by a group averaging on the
strands dual to ∂D:

ZPR(�, T) =
∫

SU(2)

dh〈(∂T)∗h〉, (3)

where (∂T)∗h is the spin network dual to the surface of the torus with h inserted along dual
edges crossing ∂D. The diagram is defined by first cutting along this circle, choosing the
planar no crossing diagram of the graph and then connecting up along the identified edges.
See figure 2, and the appendix for an explicit example.

We can easily generalize this example to arbitrary genus handlebodies. By definition, a
handlebody of genus g comes equipped with a set of g standard cuts that reduce the handlebody

4
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h h

Figure 2. By replacing the gluing along the four faces with a group averaging on edges crossing
the dashed line (left), we re-express the T amplitude on the boundary (right).

to the 3-ball. We call these cuts Di with an index i ∈ C, where C is a set of labels for the
standard cuts. For later use, note that it is always possible to define a complete set of generators
ci of the homology group H1(�

3) such that each ci is transversal to the cut Di and does not
intersect the other cuts.

We can choose an equivalent set of cuts that are related to the standard cuts by boundary
preserving homotopy as long as the cuts remain non-intersecting. In particular from now on
we will choose the cuts so as to lie on the triangulation. This implies a restriction on the class
of triangulations considered as such a choice may not exist for small triangulations.

Now we can state

Lemma 2.

ZPR(�,�3) =
∫

SU(2)

∏
i∈C

dhi〈(∂�3)∗hi
〉, (4)

where �3 is a handlebody, ∂�3 is its triangulated boundary which carries half-integer labels
on its edges and C labels the cuts. Choose a set of cuts Di that lie on the triangulation.
〈(∂�3)∗hi

〉 is the spin network evaluation of the dual of the triangulation of the surface, with
the links labelled by the half-integer lengths of the edges they cross and an hi ∈ SU(2) inserted
on every link that crosses a cut ∂Di ∈ ∂�3, i ∈ C. The spin network is evaluated in the planar
projection of the boundary of the cut manifold. That is, with all crossings being due to the
links crossing a cut.

Proof. Cutting �3 along the discs Di reduces it to a 3-ball. The spin network evaluation is
defined by taking the planar no crossing representation of the graph cut along the circles ∂Di

and then connecting the identified open ends. If we choose a triangulation that triangulates
each disc Di without internal vertices and reexpress the resulting amplitude as a spin network
evaluation, then the gluing of the faces corresponds to a projection onto invariant subspaces.
Replace the projection onto the invariant subspace by a group integration and we get the
lemma. �

Note that due to the intertwining property of the spin network the choice of Di does not
matter, it merely moves the hi insertion in the intertwiner around.

2.2. Coherent triangles

In order to have a clear geometric picture of the amplitude we will choose the intertwiners
in the boundary state � by using coherent states αk(n, θ) [16]. These are the highest weight
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eigenstates of the normalized Lie algebra elements, that is for Li = i
2σ i the Lie algebra

generators and n ∈ S2, a coherent state αk(n, θ) in the k representation satisfies

L · nαk(n, θ) = ikαk(n, θ). (5)

The parameter θ describes a choice of representative of the U(1) equivalence class of states
that correspond to the same n. These states transform with a phase under the group elements
generated by L · n and the label n transforms covariantly under the SO(3) action of SU(2).
That is, for g ∈ SU(2) with the corresponding SO(3) element ĝ:

gαk(n, θ) = eikφαk(ĝn, θ). (6)

For the asymptotic analysis, three further properties will be crucial.

• The k representation can be constructed as the symmetric subspace of 2k copies of the
fundamental representation. In this picture coherent states decompose into a tensor
product of coherent states in the fundamental representation. Consequently the group
action factorizes

gαk(n, θ) = g

2k⊗
i=1

α 1
2
(n, θ) =

2k⊗
i=1

ei φ

2 α 1
2
(ĝn, θ). (7)

• The modulus squared of the Hermitian inner product of coherent states is given by

|〈αk(n1, θ1), αk(n2, θ2)〉|2 = (
1
2 (1 + n1 · n2)

)2k
. (8)

• Under the action of the standard antilinear structure on SU(2) (see [9]), the coherent state
changes as

L · nJαk(n, θ) = −ikJαk(n, θ). (9)

The antilinear map J is given by multiplication by the epsilon tensor in the spin k
representation followed by complex conjugation. J commutes with SU(2) elements.

Note that given a set of three edge labels ki there is a non-zero intertwiner exactly if they
satisfy the triangle inequalities. Therefore, there is a set of ni , unique up to O(3) such that∑3

i=1 kini = 0. We can then choose our intertwiner in the boundary state � as

ι =
∫

SU(2)

dX
⊗

i

(Xαk(ni , θi)). (10)

This state is clearly an SU(2) invariant state. As we noted that SU(2) acts covariantly as
SO(3) on the labels ni this choice is only dependent on an unspecified phase as we left open
which eigenstates of L.ni we are using. In particular, it does not depend on the remaining
parity P = O(3)/SO(3) as this acts on the plane of the triangle as an SO(3) element.

Thus choosing normalized αk(n, θ) compatible with the boundary spin labels fixes the
intertwiner states up to a parity choice and up to a phase. These two data will be fixed by
considering the gluing of the boundary.

2.3. Regge state

Let V be a set of labels for the boundary faces. Then we label the boundary edges by pairs
ab | a, b ∈ V and call the set of such pairs E. Let φa : �a → N⊥ be an orientation-preserving
map from the ath triangle on ∂�3 to the plane orthogonal to the north pole of S2 (which we
denote N = (0, 0, 1)). We choose the orientation in N⊥ to be the one inherited from R

3

by taking N to be the outward surface normal. As the boundary of �3 is orientable, we can
define nab = φa(eab) where ab ∈ E.

6
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The requirement that φa be orientation preserving implies that the triangles with the edge
vectors given by kini all have the same orientation in N⊥. In particular, we can require them
to have the same orientation as we have chosen for N⊥. In particular, this implies that we can
glue up any two triangles a,b with a common edge in N⊥ in an orientation-preserving way.

Thus there exists an element ĝab ∈ SO(3) such that

−nba = ĝabnab N = ĝabN , (11)

where nab is the edge vector of triangle a that gets glued to triangle b. As in [9], ĝab is the
Levi-Civita parallel translation from triangle a to triangle b, according to the bases provided
by φa and φb. Again, given a choice of spin structure for �3, a choice of a spin frame for each
triangle defines the SU(2) lift gab as the parallel translation of the spin connection in these
frames.

Next we will describe a canonical choice of phase for the boundary state �. From (6),
αk(−nab, θab) is proportional to gabαk(nba, θba). Then we fix the relative phase of the coherent
states on the boundary:

Jαk(nba, θba) = gabαk(nab, θab). (12)

We call coherent states with the above relative state choice Regge states, and denote them
as |n, k〉. Their image under the antilinear structure is |−n, k〉 = J |n, k〉, and states in the
fundamental representation are denoted |n〉.

The total boundary state is then given by

�(ki, ni ) =
∫ (∏

a∈V

dXa

) ⊗
cd∈E

Xc |ncd , kcd〉. (13)

Due to the presence of the antilinear map in the definition of the relative phase the overall
ambiguity not fixed by (12) cancels in the overall state. At each triangle a, we have a sign
freedom as adding a sign contributes (−1)2

∑
b,ab∈E kab = 1 by the admissibility conditions on

intertwiners. This shows that as in [9] the possible lifts of ĝab are defined by the spin structures
on the boundary and do not rely on the arbitrary spin frame covering chosen to define the lift.

Finally note that inverting the orientation of N⊥ would have the same effect as turning
the state into � ′ = J�.

2.4. The amplitude

We begin with B3. To evaluate the spin network defining our amplitude in terms of these
coherent intertwiners, we choose a particular diagrammatic representation of the planar
graph. To obtain the spin network evaluation of this graph, we then contract the intertwiners
chosen using the epsilon inner product defined in terms of the Hermitian inner product by
(α, β) = 〈Jα|β〉. Number the triangles in the graph from left to right. We then assume that
the coherent intertwiners have been specified with respect to this planar representation of the
graph as well. Then we have no crossings in the diagram and we can now explicitly write the
contraction of coherent intertwiners as

ZPR(�,B3) =
∫ ∏

a∈V

dXa

∏
bc∈E

(Xb |nbc, kbc〉 , Xc |ncb, kbc〉)

=
∫ ∏

a∈V

dXa

∏
bc∈E

〈−nbc, kbc| X†
bXc |ncb, kcb〉

=
∫ ∏

a∈V

dXa

∏
bc∈E

〈−nbc| X†
bXc |ncb〉2kbc , (14)

where we have written |ncb〉 for
∣∣ncb,

1
2

〉
.
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For general manifolds we need to make sure that, after we have chosen the circles, the
dual edges crossing a circle all have the same orientation relative to the circle. This can be
done by using a planar representation that has all the glued discs strictly left or right of each
other. Call Ẽ the set of edges not crossing circles and Ej the set of edges crossing circle j ∈ C.
The amplitude is then given by

ZPR(�,�3) = (−1)χ
∫ ∏

a∈V

dXa

∏
j∈C

dhj

∏
bc∈Ẽ

〈−nbc| X†
bXc |ncb〉2kbc

×
∏
l∈C

∏
de∈El

〈−nde| X†
dhlXe |ned〉2kde , (15)

where (−1)χ is a sign factor incurred in the spin network evaluation when connecting up the
glued edges in the spin network evaluation. This can then be written as

ZPR(�,�3) = (−1)χ
∫ ∏

i∈V

dXi

∏
j∈C

dhje
S, (16)

with the action given by

S =
∑
ab∈Ẽ

2kab ln 〈nab| JX†
aXb |nba〉 +

∑
l∈C

∑
de∈El

2kde ln 〈nde| JX
†
dhlXe |ned〉. (17)

Note that the ambiguity in the logarithm of a complex number does not affect the amplitude.

2.5. Symmetries of the action

The action (17) has the following symmetries (up to 2π i).

• Continuous. A global rotation Y ∈ SU(2) acting on each Xa and hi as Xa → YXa and
hi → YhiY

−1. This represents a rigid motion of the whole manifold.

• Discrete. At each triangle a, the transformation Xa → εaXa with εa = ±1 leaves a factor

ε

∑
b,ab∈E 2kab

a . As the admissibility conditions are satisfied on each triangle, this factor
equals 1. Similarly we have an arbitrary sign εi on hi as the edges on which hi act satisfy
the admissibility condition for intertwiners.

This latter symmetry will be used to compensate for the ambiguity of the lifts of SO(3)

to SU(2).

2.6. Relation to the standard intertwiner phase choice

The standard choice of phase for an intertwiner, defined by chromatic evaluation [17], gives
real numbers for a spin network evaluation. We will now show that with the Regge phase
choice the amplitude is real so can only differ from the chromatic evaluation by ±1 and a
normalization factor. Note that since the Regge choice has all the nab orthogonal to ez, the
rotation e−iπez·σ rotates ncb to −ncb and leaves ez invariant. Under this rotation, the coherent
state |ncb〉 will transform as

e−iπez·σ |ncb〉 = eiφJ |ncb〉 (18)

for some phase φ.

8
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ĥ ∈ SO(3)

Figure 3. A cut immersion for a particular boundary triangulation of a torus. The cutting circles
are shown in bold and there is an ĥ ∈ SO(3) that identifies them.

Consider a single term in the amplitude (15), and rewrite it inserting the identity

〈−nbc| X†
bXc |ncb〉 = 〈−nbc| eiπez·σ (

e−iπez·σ X
†
b

)
(Xc eiπez·σ ) e−iπez·σ |ncb〉

= 〈nbc| J † eiπez·σ X̃
†
bX̃c e−iπez·σ gcbJ |nbc〉

= 〈nbc| J † e−iφJ †X̃
†
bX̃cgcbJ eiφJ |nbc〉

= 〈nbc| J †J †X̃
†
bX̃cJ |ncb〉

= 〈−nbc| X̃†
bX̃c |ncb〉, (19)

where we have defined the transformation X̃c = Xc eiπez·σ , which can be absorbed on the group
integration in (15) and the fact that J |ncb〉 = |−ncb〉. We have used the Regge phase choice
(12) from going from the first to the second line and the fact that the SU(2) transformations
are all in fact in the same U(1) subgroup (and hence commute). From going to the second
to the third line, we have noted that we are acting with opposite rotations on the same state.
Hence we get that ZPR(�,�3) = ZPR(�,�3) which is thus real.

3. Asymptotic formula

We wish to study the semiclassical limit of the amplitude ZPR(�,�3). In order to do this, we
homogeneously rescale the spin labels by a factor λ. The corresponding boundary state �λ is
given by �λ = �(λki, ni).

Given a set B = {nab, kab}a 
=b of boundary data we denote as I the set of cut immersions
of the polyhedral surface ∂�3 with edge lengths kab in R

3 up to rigid motion.
A cut immersion i ∈ I is an immersion of the manifold obtained from ∂�3 by the

trivializing cuts ∂Di , i ∈ C, i.e. it is an immersion ı(∂�3 − {∪i∈C∂Di}) ↪→ R
3. Furthermore,

we require the existence of SO(3) elements that identify the two sides of the cut, i.e. ĥi ∈ SO(3)

such that ĥi(ı(∂D
+
i )) = ı(∂D

−
i ), where ∂D

−
i and ∂D

+
i are the elements of the boundary

∂(∂�3 − ∂Di ) created by the removal of ∂Di from ∂�3 1.
Any two cut immersions of �3 are defined to be equivalent and can be obtained from

each other if the cuts are related by a homotopy on the surface. Therefore, different choices
of cuts Di lead to equivalent cut immersions. An example of a cut immersion is given in
figure 3.

Such an immersion is called rigid if every continuous deformation of it requires changing
the edge lengths, and flexible otherwise. We denote the subset of rigid immersions Ir ⊂ I.

1 Note that since Di is transversal to generators of H1(�
3), its removal changes the connectivity of �3 and creates

two new boundaries D
−
i and D

+
i .

9
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Through every immersion in I passes at least one manifold (with dimension d) of immersions
that can be continuously deformed into each other. We call these flexifolds and denote them
f, we denote the set of flexifolds F. We then define Fmax to be the set of flexifolds in F of
maximal dimension dmax. With this definition the rigid immersions are a special case of a
flexifold with dimension d = 0. We assume from now on that the flexifolds f do not intersect.

In the limit λ → ∞ we have the following theorem:

Theorem 1 (Asymptotic formula).

(1) If I is not empty we have that

ZPR(ψλ,�
3) =

(
2π

λ

) 3(|V |+|C|−1)−dmax
2 ∑

f∈Fmax

Nf cos

(
λ

∑
ab∈E

kab�
f

ab + φ
f

ab

)

+ O

((
1

λ

) 3(|V |+|C|)−dmax
2

)
. (20)

The coefficient Nf, the dihedral angle �
f

ab and the phase φ
f

ab are independent of λ.

The φ
f

ab and the dihedral angle �
f

ab are evaluated on an arbitrary immersion i in f. It
can be shown that these are independent of the cuts. Thus for any particular edge we can
evaluate the dihedral angle by moving the cut away from it. |V | is the number of triangles
(or equivalently vertices in the set V) and |C| is the number of cutting circles. dmax is the
dimension of the flexifolds f ∈ Fmax, and Nf now also contains an integral over the union
of flexifolds in f.

(2) If no immersions in R
3 exist the amplitude is exponentially suppressed:

ZPR(ψλ,�
3) = o(λ−n) ∀n. (21)

Note that in the simple case where the boundary data only admits rigid immersions, i.e.
if dmax = 0, then the sum becomes a sum over the rigid immersions i ∈ Ir and we have that

ZPR(ψλ,�
3) =

(
2π

λ

) 3(|V |+|C|−1)

2 ∑
i∈Ir

Ni cos

(
λ

∑
ab∈E

kab�
i
ab + φi

ab

)

+ O

((
1

λ

) 3(|V |+|C|−1)

2 +1
)

(22)

since dmax = 0. Since the immersions are now rigid, the coefficient Ni, the dihedral angles
�i

ab and the phase φi
ab are evaluated on the cut immersion i.

4. Proof of the asymptotic formula

We now prove the above theorem. We begin by describing the methods used to give the
asymptotic form of the amplitude; this will require finding the so-called stationary and critical
points of the action. We can then interpret these points geometrically and give the asymptotic
formula. Much of this section is similar to [9] but one dimension lower so the analysis will be
as brief as possible.

10
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4.1. Stationary phase

To find the asymptotic form of the amplitude, we will use the complex stationary phase formula
[18], as in [9]. However, we will also require the stationary phase formula for non-isolated
critical points. We briefly describe this alteration of the standard stationary phase formula
below.

Let D be a closed manifold of real dimension n, and let S and a be smooth, complex,
valued functions on D such that the real part Re S � 0. Note that S need not be holomorphic.
Consider the function

f (λ) =
∫

D

dx a(x) eλS(x). (23)

If the action has degenerate critical points, i.e. the Hessian matrix has zero determinant,
care is needed to compute the asymptotics (see e.g. [19]). Let C := {y ∈ D|δS(y) =
0, ReS(y) = 0} denote the set of critical points. Note that we cannot a priori assume C to be
a disjoint union of manifolds; however, here we have restricted ourselves to this case so that
the following generalized stationary phase theorem applies.

For a smooth function S whose critical set C is a disjoint union of closed manifolds2, each
critical manifold Cx0 of dimension p, labelled by some x0 on the critical manifold, contributes
the following to the asymptotic formula [19]:(

2π

λ

)(n−p)/2

eλS(x0)

∫
Cx0

dσCx0
(y)

a(y)√
det(−H�(y))

[1 + O(1/λ)], (24)

where H�(y) is the restriction of the matrix to the directions normal to Cx0 with respect to
some Riemannian metric on the domain, and dσCx0

is the canonical measure induced on the
critical submanifold by the same Riemannian measure on the domain space. This extends to
the case where C is a manifold-with-boundary.

4.1.1. Critical points. As described above, we must find the points of the action (17) such
that ReS = 0 as these are the only points that contribute in the limit λ → ∞. First, we
introduce some more notation. The action of the elements Xb on the coherent states will
produce a new coherent state

|n′
ab〉 = Xa|nab〉. (25)

We will denote the corresponding rotated 3-vectors by

n′
ab = X̂anab, (26)

where X̂a is the SO(3) element corresponding to Xa.
We will first consider critical points for edges that are not on one of the cutting circles.

Using (8), we can see that the real part of the action is given by

Re S =
∑
ab∈Ẽ

kab ln
1

2
(1 − n′

ab · n′
ba). (27)

This does not depend on the coherent state phases as it is real. Using this formula, we can see
that ReS = 0 when n′

ab = −n′
ba for all ab, or explicitly in terms of SO(3) rotations

X̂anab = −X̂bnba. (28)

The critical points for an edge that crosses a cutting circle i differ by the inclusion of the hi:

X̂anab = −ĥiX̂bnba. (29)

2 In the literature this is called a Morse–Bott function. A Morse function is the special case where the critical
manifolds are zero-dimensional (so the Hessian at critical points is non-degenerate in every direction, i.e. has no
kernel).

11
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4.1.2. Stationary points. The stationary points are found by varying the action with respect
to each of the group variables Xa. The variation of an SU(2) group variable and its inverse is

δX = T X δX−1 = −X−1T (30)

for an arbitrary su(2) Lie algebra element T = 1
2 iT jσj . The stationary points are given by

δS = 0 and lead to the following equation:∑
b:b 
=a

kabVab = 0, (31)

where

Vab = 〈−nab|X−1
a σXb|nba〉

〈−nab|X−1
a Xb|nba〉

. (32)

These equations can then be evaluated at the critical points to give∑
b:b 
=a

kabnab = 0, (33)

which is the closure constraint for an immersed triangle.
The stationary phase condition for the hi variables is the same but in this case we obtain∑

ab∈Ci

kabn′
ab = 0, (34)

which is the closure condition for edges on the circle i immersed in R
3. Note that unlike

the closure condition for the triangle, this relation involves the n′
ab as each edge belongs to a

different triangle.
If the critical points are not isolated but form a manifold of critical points, then we denote

this manifold by

CX = {(X1, . . . , X|V |, h1, . . . , h|C|) ∈ SU(2)|V |+|C| : δS = 0, Re(S) = 0}. (35)

4.2. Geometric analysis

We will now describe how the critical/stationary points and the action evaluated at them can
be given a geometric interpretation. Each critical point will correspond to an immersion of
the boundary data in R

3 and we will show that the action evaluated on the critical points gives
the Regge action for that immersion. For triangulations of the 3-ball and integer spin this is
straightforward; however, the additional group elements arising from the trivializing cuts of
higher genus handlebodies and the need to lift the geometric SO(3) quantities to SU(2) will
introduce complications.

We first establish the geometric interpretation of the critical/stationary point equations
in terms of immersions of the boundary in R

3. We will then discuss in some details the
Regge action for handlebodies in terms of the immersion of their boundary, paying particular
attention to the sign of the dihedral angles and the role of the trivializing cuts. We then
show that the group elements Xa at the critical points have an interpretation as SU(2) gauge
transformations relating the gluing maps and the dihedral rotations interpreted as connections.
The discrete symmetries are interpreted as giving spin frames and spin structures. Using this
we can precisely evaluate the action at the critical point to the Regge action.

12
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4.2.1. Geometric correspondence of critical points. The critical points correspond to
immersions of the surface geometry defined by the boundary data cut along the trivializing
cuts. This is easy to see as the critical and stationary equations simply enforce the existence
of a consistent set of edge vectors to be associated with each edge. Precisely formulated we
have that

Lemma 3 (Geometry). Given a set of boundary data B satisfying the closure constraint on
each triangle, the solutions Xa, hi to the critical and stationary point equations (28), (29) and
(34) correspond to immersions of a geometric triangulated 2-manifold with boundary in R

3.
This manifold is the one obtained by cutting the boundary manifold ∂�3 along the trivializing
cuts C and has a boundary

⋃
i∈C ∂D

+
i ∪ ∂D

−
i . This immersion is subject to the constraint that

a set of ĥi ∈ SO(3) exists that map the immersion of ∂D
+
i to the parity flipped P(∂D

−
i ), that

is, the immersion of ∂D
+
i is congruent and oppositely oriented to the immersion of ∂D

−
i (i.e.

figure 3).
The edge vectors of the immersion are given by

vab(i) = kabX̂anab.

Its orientation is the one induced by the vectors on each face.
Conversely, an immersed surface i determines a set of kab, nab and a set of SO(3) elements

X̂a(i) up to SO(2) rotations.

Proof. Start somewhere on the surface of �3 that is not in a circle. Since �3 has a
connected boundary, the entire surface is now contractible to this point if cut along the circles.
Take the triangle �a you are on as embedded in N⊥ and rotate it according to the stationary
point equations to Xa�a . Embed the next triangle and rotate it, according to the stationary
point equations its edges are now antiparallel to already immersed edges. As these are
geometrically glued a translation exists that identifies all its edges with already immersed
ones. Thus iteratively the whole immersed surface can be built up and the closure conditions
on the cuts now imply that the surface closes up. Finally the stationarity equations on the
circles imply that the P ĥi identifies the circles where we cut the surface.

Conversely given an oriented immersion with the right edge lengths we can choose a set
of edge vectors compatible with the orientation on the surface. On each triangle there are
two linearly independent edge vectors. The map from these to the corresponding boundary
elements defines a rotation in SO(3). On the boundary circles, we explicitly have SO(3)

elements. The complete set of these solves the critical point equations. �

If there is a manifold of dimension d > 0 of critical points then lemma 3 holds for
each critical point in CX. Since these critical points lie on a manifold, there is a continuous
deformation of the immersed surface that does not change the edge lengths. Hence these
critical points reconstruct flexible immersions and we arrive at the flexifolds f described in
section 3. We will now label the critical manifolds by Cf, where f is the flexifold that it
describes.

4.2.2. The Regge action for handlebodies. For a convex polyhedral body embedded in R
3

it is straightforward to write down its Regge action. It is simply given by summing over
the product of dihedral angles and edge lengths SR = ∑

lab�ab on the boundary. Here the
dihedral angle �ab is defined by cos �ab = Na ·Nb and 0 � �a < π , where Na is the outward
facing normal of the triangle a. To define the Regge action for the kind of immersions we have
defined above we need to be more careful. We can no longer assume 0 � �a < π to fix the
sign of the dihedral angle, and there is no longer an obvious notion of outward facing normal.

13
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Furthermore we need to take account of the presence of the trivializing cuts. We will here
give a description of the Regge action in terms of the cut immersion of its boundary, taking
account of these facts. These particular definitions will be well suited for the analysis of the
action at the critical points.

Given an oriented surface in R
3, the standard orientation automatically gives us a

consistent set of normals Na to the ath triangles. This replaces the notion of outward facing
normals for a convex body.

By our choice of boundary data we have automatically ensured that these normals are
given simply by

Na = X̂aN .

We can define the dihedral rotation for an oriented surface unambiguously as the rotation
D̂ab ∈ SO(3) around the geometric edge vector vab(i) that takes Na to Nb. That is

Nb = D̂abNa

and

vab(i) = D̂abvab(i).

A lift of this rotation to an SU(2) element can thus be written as

Dab = exp

(
�i

ab

vab(i)

|vab(i)| .L
)

= exp(�i
abn′

ab.L) ∈ SU(2), (36)

where L are SU(2) generators and we require −π < �i
ab � π . We then call �i

ab the dihedral
angle. As vab(i) = −vba(i) this definition clearly implies �i

ab = �i
ba . It can be checked

that this is a lift in the same sense as for the gab, corresponding to a spin structure to be
studied later and a choice of spin frame in each triangle. If we have a surface defining a
convex subspace of R

3, this definition reduces to the usual definition up to a global sign. In
particular, the consistent choice of orientation then ensures that we have 0 � �i

ab < π and
cos

(
�i

ab

) = Na · Nb if the thus defined normals are outward facing and 0 � −�i
ab < π if

inward.
If we are considering handlebodies with g > 0, then the immersed surface will have a

boundary. On the boundaries of the surface we can also define an analogue of the dihedral
rotation by requiring

ĥiNb = D̂abNa

and

−ĥivba(i) = vab(i) = D̂abvab(i).

Geometrically this makes sense as it corresponds to the angle obtained by gluing on the two
identified boundaries of the immersed surface. This then allows us to give the Regge action
of a cut immersion as

SR =
∑

kab�ab.

Given a particular triangulation of the interior of the handlebody without internal vertices,
we can define a metric throughout the handlebody by inserting the internal edges into the
immersion and pushing forward the metric in the immersed tetrahedra to the handlebody.
After all we are defining the metric on the handlebody with the metrics of the tetrahedra
right?3 The Regge action defined here is just the Einstein–Hilbert action evaluated on that

3 Note that this metric will in general not be a flat metric, and it is possible that no interior triangulation corresponding
to a flat metric exists.

14



J. Phys. A: Math. Theor. 43 (2010) 115203 R Dowdall et al

metric simplexwise and summed with relative signs given by the pull back of the orientation.
Note that though the metric will depend on the particular triangulation chosen, the action
defined in this way does not. We can verify that it does not depend on the trivializing cut by
direct calculation.

In particular moving a triangle a across the cut has, according to the geometric
correspondence established above, exactly the effect of changing Na to h−1

i Na and vab to
h−1

i vab. Thus, we have Nb = D̃abh
−1
i Na and vab = D̃abh

−1
i vab. Therefore, by direct

comparison we have D̃ab = h−1
i Dabhi and the dihedral rotation changes only by conjugation,

its eigenvalues are unchanged. This shows that the Regge action defined here is indeed
invariant under moving the cuts.

4.2.3. The group variables at the critical points. The dihedral rotations are given as SO(3)

elements; the group elements in the action, however, are SU(2). As before with the gluing
maps gab we have, through a choice of spin structure and spin frames at each triangle, lifted
the D̂ab to a set of Dab. These again have an interpretation as an SU(2) connection on the
boundary. In this section, we will show that the Xa can be interpreted as being a gauge
transformation relating the connection Dab to the connection obtained from gab by inserting hi

whenever crossing a cut. The discrete symmetries are found to account for arbitrary choices
of the spin structure and spin frames. This allows us to resolve all sign ambiguities in relating
the action of the state sum amplitude to the Regge action. We will proceed by first noting the
equivalence as SO(3) connections and then discussing in some detail the lift to SU(2)

Connections. Consider the following diagram which applies to two adjacent triangles that
are not on a cutting circle:

ta

gab

Xa τa

(−1)νabDab

tb
Xb

τb

(37)

Here ta is the boundary triangle at N⊥ with edge vectors given by kabnab and τa is the
triangle rotated according to its location in the surface, which according to the geometry
lemma 3 has edge vectors given by vab(i) = kabX̂anab. The SO(3) action of this diagram
immediately commutes, as can be seen by acting on nab and N . This implies that the Xa act
as gauge transformations relating the SO(3) connections D̂ab and ĝab away from the circles.
To analyse the lift to SU(2) connections we define a sign (−1)νab that makes it commute as
SU(2). The discrete sign symmetry Xa → εaXa of the action can be seen as acting on this
sign by (−1)νab → εaεb(−1)νab .

Now, for two triangles whose common edge is on a cutting circle i, in the same way we
have a commuting diagram as

ta

gab

Xa τa

(−1)νabDab

tb
hiXb

τb

(38)

and additionally have (−1)νab → εaεbεi(−1)νab . Together these diagrams can be interpreted
as saying that D̂ab is indeed a gauge transformation obtained from the connection given by
ĝab away from the cuts and ĝabĥi on the cut.
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Spin lift. Now we will fix the signs emerging from the spin lifts of the dihedral angle by
exploring the discrete sign symmetry in hi and Xa. Recall that the discrete sign freedom of the
action Xa → εaXa emerged from a different choice of spin frame for each triangle. Now, we
show that the discrete sign symmetry related to the cuts hi → εihi corresponds to different
choices of spin structures for the manifold �3. Then, using the fact that (−1)νabDab is a gauge
transform of the connection gab we can fix the symmetries by adjusting the spin frames and
the spin structure such that (−1)νab = 1. Thus we will show that

Lemma 4. The signs (−1)νab arising from the spin lift on each face not on the cut obey
(−1)νab = κab = κaκb for some κa = ±1. The signs for a face on the cut, i.e. ab ∈ i ∈ C obey
(−1)νab = κab = κaκbκi where κi parametrizes the spin structures of �3.

Proof. First of all, by (4.2.3) a lift of the dihedral rotations, κabDab, is just a gauge
transformation of the gab. Now recall that ĝab ∈ SO(3) are parallel translations on the
boundary triangles according to the Levi-Civita connection of the associated metric, with gab

being the parallel translation of the respective spin connection (a lift of ĝab to SU(2)).
But when the geometry around a vertex is continuously deformed to the flat geometry, the

gab holonomy of a trivial cycle around said vertex has to go to the identity rotation, as opposed
to a 2π rotation. This implies that for the holonomy around a vertex through triangles a, b

and c (which of course consists of a trivial cycle), we have

κcaκbcκabDcaDbcDab = κcaκbcκab = 1,

which implies that locally we must have κab = κaκb. The problem now is that if there are
non-trivial cycles, i.e. g 
= 0, we may not be able to extend this globally, i.e. κab may not be
globally pure gauge.

In other words, for trivial cycles, the lift of the holonomy given by the κabDab is fixed to
be the same as that given by Dab. But not so for the holonomy of a non-trivial cycle; there exist
inequivalent spin structures on a manifold. These have a one-to-one correspondence with the
elements of H1(�

3, Z2), and so are 2g in number. Hence for a non-trivial cycle, dual to the
sequence of triangles �a0 · · · �an

�a0 crossing the circle i ∈ C, we have

κana0κan−1an
· · · κa0a1Dana0Dan−1an

· · · Da0a1 = κiDana0Dan−1an
· · · Da0a1 , (39)

where a κi is introduced whenever there is an implicit choice of spin structure, i.e. it
parametrizes the different spin structures associated with the cut.

We reconcile this case with the g = 0 one by keeping the form κab = κaκb for all the
edges ab that do not lie on a circle, i.e. ab /∈ i for any i ∈ C. Then by (39) immediately
we must have for ab ∈ i, κab = κiκaκb. Since our chosen basis for H1(�

3, Z2) generates all
cycles, we can see that this form of κab has all the right properties demanded by our equations
and accounts for the different spin structures.

Therefore, taking advantage of the discrete sign symmetry, we can choose the spin
structure to be compatible with the one chosen for the lift of gab and thus we will have
(−1)νab → εiεaεb(−1)νab that makes (−1)νab = 1. �

4.2.4. The action at the critical points. We can now easily evaluate the action at the
critical points. We evaluate at the symmetry-related critical point at which (−1)νab = 1. By
equation (36) we have that

(Xa(i))
−1DabXa(i) = exp

(
�i

ab nab.L
)
. (40)

Acting with X−1
a by the left of the commuting diagram equations, using the notation

Xab(i) = (Xa(i))
−1Xb(i) if not on a circle and Xab(i) = (Xa(i))

−1hiXb(i) if on, we get

Xab(i)gab = (Xa(i))
−1DabXa(i) = exp(�ab(nab.L), (41)

where we have used (40).
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It is now straightforward to evaluate the matrix elements in the amplitude. These are of
the form 〈−nab| Xab |nba〉. Using the gluing condition this becomes 〈−nab| Xabgab |−nab〉.
Finally, by (41) this is just e

i
2 �i

ab . Thus we have overall that

〈−nab| Xab |nba〉 = e
i
2 �i

ab . (42)

Finally, we obtain that the action evaluated at the critical points is the Regge action for
the immersed surface i:

S =
∑
ab∈E

kab�
i
ab. (43)

For the flexible immersions, the action is the same for all points4 on the critical manifold so
we evaluate it on an arbitrary immersion in the flexifold.

Parity. Note that by the geometry lemma every immersion with the same boundary data
gives a solution to the critical point equations. The boundary geometry is left invariant by the
action of O(3). Acting by SO(3) on the immersion changes the solution to one related by
the continuous symmetries; however, acting with an element in the component of O(3) not
connected to the identity creates a new solution. In particular acting with parity P : n → −n
switches the sign of the dihedral angle. This is because the two equations defining Dab are
invariant under parity, and the dihedral rotation is unchanged. Thus by the definition of the
dihedral angle we have

Dab = exp

(
�i

ab

(
− vab

|vab| (Pσ)

)
.L

)

and so �P i
ab = −�i

ab.
Thus after fixing the continuous symmetry we still will always obtain two solutions with

complex conjugate action to each other.

4.3. Hessian

The stationary phase formula requires us to calculate the Hessian of the action S to determine
the weights with which the stationary points contribute to the action. This will be a
3(|V | + |C|) × 3(|V | + |C|) matrix defined by

H =
(

HXX HXh

HhX Hhh

)
, (44)

where

(HXX)
ij

cd =
(

∂2S

∂Xi
c∂X

j

d

)
, (HhX)

ij

pd =
(

∂2S

∂hi
p∂X

j

d

)
,

(45)

(HXh)
ij
cq =

(
∂2S

∂Xi
c∂h

j
q

)
, (Hhh)

ij
pq =

(
∂2S

∂hi
p∂h

j
q

)
.

The global SU(2) symmetry of the action implies that there is a redundant integration in I. This
will cause the determinant of the Hessian to be zero unless it is gauge fixed. To solve this, we
make the change of variables Xa → XbXa for some b ∈ {1, . . . , |V |}. This has the effect of
removing the Xb variables and the integral gives a volume of SU(2) which can be normalized

4 In the mathematical literature this fact is known as the ‘strong bellows conjecture for the case of mean curvature’
and was shown in [20]. Several proofs and stronger versions are known, see e.g. [21].
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to 1 as it is compact. The remaining Hessian is now a 3(|V | + |C| − 1) × 3(|V | + |C| − 1)

matrix. The submatrix HXX at the critical points is given by(
∂2S

∂Xi
c∂X

j
c

)∣∣∣∣∣
δS=0,ReS=0

= 1

2

∑
b 
=c,bc∈E

kcb

(
δij − n′i

cbn
′j
cb

)
(46)

for the diagonal terms. The off-diagonal part is(
∂2S

∂Xi
c∂X

j

d

)∣∣∣∣∣ δS=0
Re S=0

= −1

2

∑
e

(δcs(e)δdt (e) + δds(e)δct (e))

× (
δij − iεijknk

s(e)t (e) − n′i
s(e)t (e)n

′j
s(e)t (e)

)
. (47)

So one can see that only the off-diagonal elements that represent two neighbouring triangles
are non-zero. The (Hhh) submatrix will be diagonal since each term in the action only contains
one hp term (i.e. each dual edge only crosses one cut)(

∂2S

∂hi
p∂h

j
p

)∣∣∣∣∣
δS=0,ReS=0

= 1

2

∑
b 
=c,bc∈Cp

kcb

(
δij − n′i

cbn
′j
cb

)
. (48)

The mixed terms HXh,HXh will be non-zero only for triangles with an edge on the cut:(
∂2S

∂Xi
c∂h

j
q

)∣∣∣∣∣ δS=0
Re S=0

= −1

2

∑
ab∈Eq

c=a,b

kab

(
δij − iεijknk

ab − n′i
abn

′j
ab

)
. (49)

Note that

(Xa(i))
−1DabXa(i) = exp

(−�i
ab(nab(i)).L

)−1 = ((Xa(P i))−1DabXa(P i))−1, (50)

where we used that Dab = exp
(
�i

ab

(− vab(P i)

|vab(P i)|
)
.L

)
on the second equality. By (41) we then

have (Xab(i)gab) = (Xab(P i)gab)
−1, so if we replace the Xab(i) in 〈−nab| Xab(i) |nba〉 with

the parity-related one we now obtain the complex conjugate

〈−nab| Xab(i)gab |−nab〉 = 〈−nab| (Xab(P i)gab)
−1 |−nab〉

= 〈−nab| Xab(P i)gab |−nab〉
= 〈−nab| Xab(P i) |nba〉. (51)

Thus we can see that the action of parity on the Hessian matrix will also result in complex
conjugation when evaluated at the critical points.

4.4. Proof of the formula

We can now apply the stationary phase approximation to the amplitude ZPR(�λ,�
3) defined

in (15). We begin by fixing the symmetries of the action. This can be achieved by taking
an arbitrary vertex and dropping the group integration associated with it. As shown in
section 4.1.1 the critical point equations are the equations for the immersion of a polyhedral
surface with the geometry specified in the boundary data. If a particular immersion is rigid,
no infinitesimal deformation taking it to another such immersion exists and therefore it is an
isolated critical point of the amplitude.

For the isolated critical points in Ir we can explicitly evaluate the stationary phase
approximation. Having fixed one group integration we are left with a 3(|V | + |C| − 1)-

dimensional integration. The overall scaling of these points is thus
(

2π
λ

)3(|V |+|C|−1)/2
. Further
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we obtain a set of 23(|V |+|C|−1) critical points for each immersion from the spin lift of each
SU(2). Finally the derivatives in the Hessian as defined above are taken with respect to a
parametrization of SU(2) with volume (4π)2, so we need to rescale by this factor. Using
equation (42) and lemma 4, the amplitude itself evaluates to the Regge action of the cut
immersion:

ln 〈−nab| Xab |nba〉2kab = ikab�
i
ab.

Since parity complex conjugates the action and since the Hessian matrix changes to its complex
conjugate with parity, we can absorb the phase of the determinant into the exponentials and
combine the terms from the immersion i and the parity-related immersion P i into a cosine.
Taking all these factors together we can approximate the contributions of the isolated critical
points to the partition function as

ZPR(�λ,�
3) = 2(−1)χ

(
1

4πλ

) 3(|V |+|C|−1)

2 ∑
i∈Ir

1√| det Hi|

× cos

(
iλ

∑
ab∈E

kab�
i
ab − 1

2
Arg(det Hi)

)

+ O

((
1

λ

) 3(|V |+|C|−1)

2 +1
)

, (52)

where �i
ab is the dihedral angle of the edge ab in the cut immersion i ∈ Ir .

If there are any flexible immersions of the boundary data then there will be a manifold
of critical points. Since the critical points extremize the action, it must have the same value
on every point of the critical manifold. The Hessian therefore has zero modes along the
directions of the flexifold and we must treat the integral as having further symmetries in the
neighbourhood of the flexifold. Factoring out these changes the scaling of the contribution of
these critical points by λdmax/2, where dmax is the dimension of the flexifold. Therefore, these
immersions dominate the rigid immersions if they exist; their contribution is given by

ZPR(�λ,�
3) = (−1)χ

(
2π

λ

) 3(|V |+|C|−1)−dmax
2

(
2

(4π)2

) 3(|V |+|C|−1)−dmax
2

×
⎡
⎣ ∑

f∈Fmax

Lf exp

(
iλ

∑
ab∈E

kab�
f

ab

)
+ Lf exp

(
−iλ

∑
ab∈E

kab�
f

ab

)⎤
⎦

+ O

((
1

λ

) 3(|V |+|C|−1)−dmax
2 +1

)
, (53)

where �
f

ab is the dihedral angle of the edge ab of a particular cut immersion i in the flexifold
f. As the action is constant along the flexifold it does not matter where we evaluate it. Lf is
given by

Lf =
∫
Cf

dσCf
(y)

a(y)√
det H�

f
(y)

, (54)

where H�
f

is the Hessian matrix for the transverse directions which we cannot give a general
formula for. Combining the exponentials into cosines as above we obtain part 1 of the main
theorem.

Finally, if no immersions of the boundary data exist, then there are no solutions to the
critical point equations and the stationary phase formula results in a suppressed amplitude.
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5. Example: the tetrahedron

Here we apply the above results to the well-known case of the asymptotics of the amplitude
for a single tetrahedron which, with an appropriate choice of normalization for the boundary
intertwiners, will correspond to the 6j symbol. This is a special case of theorem 1 so the proof
is the same as above. In particular, the critical and stationary point equations are the same
and the action evaluated at these points reduces to the Regge action for a tetrahedron. Since
the asymptotic formula for the tetrahedron is already known, we must verify that our formula
agrees with this result. This also provides further evidence that the asymptotic formula for
the 4D case derived using the same methods in [9] is correct. We begin by noting that, up to
parity, the boundary data of a tetrahedron has only one immersion so the sum in the asymptotic
formula disappears.

5.1. Normalization and scaling behaviour

We can now compare our theorem with the Ponzano–Regge asymptotic formula for the 6j

symbol. The Ponzano–Regge formula is{
λk12 λk13 λk14

λk23 λk24 λk34

}
→ 1√

12πVol
cos

(∑
a<b

(
λkab +

1

2

)
�ab +

π

4

)
, (55)

where Vol is the volume of a geometric tetrahedron with edge lengths λkab + 1
2 and �ab are

the dihedral angles. Note that the formula scales as λ−3/2 due to the volume term. Currently,
our formula for the tetrahedron contains the Regge action but the amplitude, phase term and
scaling do not obviously agree with (55). We will first consider the intertwiner normalization,
which will be necessary to obtain the correct scaling behaviour and some numerical factors,
and then evaluate the Hessian numerically to check the agreement of the remaining terms.
The main drawback of the coherent state approach occurs here as it is very difficult to obtain
an analytic formula for the determinant of the Hessian matrix.

5.1.1. Intertwiner normalisation. For the 6j symbol, the three valent intertwiners are
normalized by dividing by the square root of the theta spin network. The coherent intertwiners
that we replaced these with, however, are not normalized. The normalization of these
intertwiners for the coherent tetrahedron was studied in [13] so we will briefly summarize the
results for the case of the coherent triangle.

The normalization of the coherent intertwiner is given in terms of the three edge vectors
of the triangle n1, n2, n3 by the Hermitian inner product

f�(ni , ki) =
∫

SU(2)

dX

3∏
i=1

〈ni , ki |X|ni , ki〉

=
∫

SU(2)

dX exp S�, (56)

where

S� =
3∑

i=1

2ki ln〈ni |X|ni〉. (57)
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This integral can be calculated exactly using [16, 17], the result being

f� = (1 − n1.n2)
p(1 − n1.n2)

q(1 − n1.n2)
r (p + q)!(q + r)!(p + r)!

2p+q+r (p + q + r + 1)!p!q!r!
, (58)

where p = k1 + k2 − k3, q = k2 + k3 − k1 and r = k1 + k3 − k2.
The asymptotics of this intertwiner normalization can also be found using the stationary

phase [13]. The stationarity of the action S� gives the closure condition and the action
evaluated on the critical points ±I gives zero:

f�(ni , λki) ∼
(

2π

λ

)3/2 2

(4π)2

1√
det H�

= 1√
23πλ3 det H�.

(59)

The additional factor 2 comes from the fact that both I and −I are critical points that give the
same contribution to the action. H� is the Hessian matrix of the action which is given by

H
ij

� = ∂2S�

∂Xi∂Xj

= 1

2

∑
l

kl

(
δij − ni

ln
j

l

)
. (60)

We can now normalize our formula such that it agrees with the standard normalization by
dividing by a factor (f�a

)1/2 for each triangle a.

5.1.2. Numerical calculations. With the intertwiner normalizations included in the
asymptotic formula, we obtain{

λk12 λk13 λk14

λk23 λk24 λk34

}
= ZPR(�λ, σ )∏4

p=1

√
f�p

=
(

2π

λ

)9/2 24

((4π)2)3
√| det H |

1∏4
p=1

√
f�p

× cos

(∑
a<b

λkab�ab − 1

2
Arg(det H)

)
. (61)

Note that we have the correct scaling behaviour once the additional scaling factors from the
intertwiners are included. The normalization terms are real so they do not contribute any
additional phase.

The formula for the equilateral tetrahedron with both the exact and approximate intertwiner
normalization was compared to the 6j symbol and the Ponzano–Regge asymptotic formula
using Mathematica in figure 4. We see that our formula differs from the Ponzano–Regge
formula for low spins. The only point where our formula differs from Ponzano–Regge is
in the fact that the Ponzano–Regge asymptotics are given in terms of the dihedral angles
and volume of the tetrahedron with edge lengths λkab + 1

2 . Therefore, the dihedral angles
and volume change nontrivially with λ. A stationary phase approximation extracts only the
scaling behaviour with respect to lambda in the asymptotic regime and cannot register this
type of low spin behaviour. This agrees as well as the PR formula for larger spins; however,
the agreement for very low values is not as good—figure 4.

6. Example: Steffen’s flexible polyhedron

Here we discuss an example for which the second part of theorem 1 is relevant, that is, we
describe a set of boundary data that admits a flexible immersion. This particular example
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Figure 4. Comparison of the 6j symbol (dots), the PR formula (solid (red) line) and equation (61)
((blue) dashed line) against the spins λj for the 6j symbol with all spins equal. The scaling factor
λ−3/2 has been removed to make the comparison easier at low spins.

(This figure is in colour only in the electronic version)
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Figure 5. A net showing a set of boundary data that reconstructs Steffen’s flexible polyhedron.

is taken from a flexible polyhedron with half-integer edge lengths consisting of 14 boundary
triangles which was found by Steffen [22]. A net for constructing this polyhedron is given in
figure 5 and the corresponding spin network in figure 6.
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Figure 6. The spin network corresponding to Steffen’s flexible polyhedron.

Since Steffen’s polyhedron admits a flex in one direction, we know that the flexifold is
at least one dimensional. As a polyhedron, it is not allowed to self-intersect but there may
be other immersions with flexibility in more than one dimension. Applying the asymptotic
formula with the same intertwiner normalization as the tetrahedron in section 5, we would
expect the scaling to be λ−17/2.

7. Discussion and conclusions

7.1. Rigidity of cut immersions

As discussed, the asymptotic formula produces a sum over all possible immersions of the
boundary data in R

3, including flexible ones. These flexible immersions scale differently and
thus dominate the rigid immersions. The question of whether a particular polyhedron is rigid
is a difficult long-standing problem in mathematics. A classic result is that convex polyhedra
are in fact rigid; however, this does not extend to immersions and non-convex polyhedra where
counter examples, like Steffen’s polyhedron discussed above, are known.

If the boundary data are topologically S2, then a theorem by Steinitz [23] applies that
states that any simplicial complex with underlying space homeomorphic to a 2-sphere admits
a simplexwise linear embedding into R

3 whose image is strictly convex. This embedding will
indeed be rigid and we can conclude that for the ball Ir will always be non-empty.

To our knowledge the only more general results on rigidity of immersions are those
giving conditions on bar frameworks, that is a graph immersed in R

d , to be generically rigid.
A bar framework is considered generic if the coordinates of the vertices are algebraically
independent over the rationals, that is, there is no polynomial with rational coefficients that
has these coordinates as roots. A graph is generically rigid if all its generic frameworks are.
A set of sufficient and necessary conditions for a graph to be generically rigid are known
[24, 25]. Unfortunately this does of course not cover our case with half-integer edge lengths.

Concerning the rigidity of cut immersions, which can be seen as bar frameworks with
additional constraints, nothing is known.

7.2. Surface immersions versus interior immersions

With the asymptotic analysis performed above, we explicitly obtain a sum over immersions
of the boundary data weighted by the cosine of the Regge action for the immersed surface.
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Δ
σ1 σ2 Δσ1

Pσ2

Figure 7. Two different possible immersions of the boundary data for two tetrahedra σ1, σ2 glued
on a common triangle �.

Previously, asymptotics of the Ponzano–Regge model for larger triangulations could only be
considered by taking the product of the asymptotic formula for each 6j symbol. We now
illustrate schematically that, in a simple example, this is in fact equivalent to the asymptotic
formula above.

We will consider the case of two tetrahedra σ1, σ2 glued along a common triangle � and
use the boundary normalization that agrees with the 6j symbol. The partition function then
reads

ZPR(�λ, σ1 ∪� σ2) =
{
λk1 λk2 λk3

λk4 λk5 λk6

} {
λk1 λk2 λk3

λk7 λk8 λk9

}
. (62)

We write the asymptotic formula for the 6j in terms of the Regge action Sσ for a tetrahedron
σ {

λk1 λk2 λk3

λk4 λk5 λk6

}
� N (exp(iλSσ ) + exp(−iλSσ )) , (63)

where several of the factors have been absorbed into the amplitude N. Asymptotically, this
gives

ZPR(�λ, σ1 ∪� σ2) = N1N2
(
exp

(
iλ

(
Sσ1 + Sσ2

))
+ exp

(−iλ
(
Sσ1 + Sσ2

)))
+ N1N2

(
exp

(
iλ

(
Sσ1 − Sσ2

))
+ exp

(−iλ
(
Sσ1 − Sσ2

))
= N1N2 exp

(∑
e⊂�

keπ

) (
cos

(
λ(Sσ1∪�σ2

)
+ cos

(
λ(Sσ1∪�Pσ2

))
, (64)

where Pσ is the parity-related tetrahedron and we have used the fact that the Regge action for
two tetrahedra becomes

Sσ1 + Sσ2 = Sσ1∪�σ2 +
∑
e⊂�

keπ. (65)

Thus the formula gives a sum over the two different ways of immersing the boundary triangles
in R

3, see figure 7.

7.3. Boundary states

We also note that it is possible to select a particular immersion in the sum by choosing a
boundary state peaked around a particular set of dihedral angles, see for example [14, 26, 27].
This boundary state also selects one overall orientation of the immersion which removes the
parity-related term in the asymptotic formula. For non-rigid immersions, the boundary state
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would also have the ability to select a particular configuration of the immersed surface which
would stop these immersions dominating the integral.

A possible problem with the boundary state is that while it selects an orientation for the
boundary, it was not clear if the orientations of the interior tetrahedra behaved consistently.
This was considered in [28] and our result also suggests that these do not cause a problem as
the asymptotic formula does not register these orientations.

7.4. Conclusions

In this paper we addressed the problem of asymptotics of larger triangulations for the Ponzano–
Regge model, by reformulating the partition function as a spin network on the boundary and
then rewriting this amplitude using SU(2) coherent states. While this particular feature will
not be available for non-topological theories one could expect that in general boundary data
will be not suppressed if it can be continued to a solution of the equations of motion on
the interior. The asymptotic formula contains a sum over immersions of the boundary data
weighted by the cosine of the Regge action. Interestingly, Ponzano and Regge point out in
[1] that the different possible immersions corresponding to 3-nj symbols should contribute
to the asymptotics but did not obtain a concrete formula. The presented work opens up the
possibility of doing an exhaustive analysis of the classical limit of the Ponzano–Regge model
including correlation functions on the boundary. As such it can serve as a toy model and proof
of concept for conceptual issues likely to arise in all background-independent theories.

Of further interest would be to consider in more detail how the asymptotics obtained here
can be obtained from the ‘product of cosines’ picture. In particular to shed light on the issue
of causality and orientation in spin foam models.

Interestingly, and unexpectedly, we found that spin networks contain some information
about the rigidity properties of surfaces. The scaling properties of a spin network correspond
to the maximum dimension of flexibility if the geometry to which it corresponds has any
non-rigid immersions.
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Appendix A. Example of the Ponzano–Regge amplitude as a spin network on the
boundary of the solid torus

Here we give a simple example of lemma 2 on the solid torus T. A non-tardis (degenerate)
triangulation of the solid torus with three tetrahedra is given by

k1

k1

k2

k2

k3

k3

k4

k5

k6

k7

k8

k9
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The two triangles with edges k1, k2, k3 are identified. The Ponzano–Regge amplitude is
given by

ZPR(�, T) =
{
k1 k2 k3

k8 k9 k7

} {
k1 k2 k3

k9 k4 k5

} {
k1 k5 k6

k2 k7 k9

}
. (A.1)

We choose the cutting disc D to be the triangle k1, k2, k3 and perform the cut that reduces T to
the 3-ball. A net for constructing the triangulation on the boundary is given by

k1k1

k2k2

k3k3

k4

k4

k5
k6

k7
k8

k9

The Ponzano–Regge amplitude can be expressed as the following spin network evaluation on
the boundary, with a group integral inserted on each of the dual edges that cross D

k1

k2

k3

k4

k5

k6

k7 k8

k9

h

h

h

ZPR(Ψ, ) = SU(2) dh

Expressing this spin network in terms of 6j symbols gives equation (A.1).
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